A hierarchical latent stochastic differential equation model for affective dynamics.
نویسندگان
چکیده
In this article a continuous-time stochastic model (the Ornstein-Uhlenbeck process) is presented to model the perpetually altering states of the core affect, which is a 2-dimensional concept underlying all our affective experiences. The process model that we propose can account for the temporal changes in core affect on the latent level. The key parameters of the model are the average position (also called home base), the variances and covariances of the process, and the regulatory mechanisms that keep the process in the vicinity of the average position. To account for individual differences, the model is extended hierarchically. A particularly novel contribution is that in principle all parameters of the stochastic process (not only the mean but also its variance and the regulatory parameters) are allowed to differ between individuals. In this way, the aim is to understand the affective dynamics of single individuals and at the same time investigate how these individuals differ from one another. The final model is a continuous-time state-space model for repeated measurement data taken at possibly irregular time points. Both time-invariant and time-varying covariates can be included to investigate sources of individual differences. As an illustration, the model is applied to a diary study measuring core affect repeatedly for several individuals (thereby generating intensive longitudinal data).
منابع مشابه
Stochastic functional population dynamics with jumps
In this paper we use a class of stochastic functional Kolmogorov-type model with jumps to describe the evolutions of population dynamics. By constructing a special Lyapunov function, we show that the stochastic functional differential equation associated with our model admits a unique global solution in the positive orthant, and, by the exponential martingale inequality with jumps, we dis...
متن کاملProposing A stochastic model for spread of corona virus dynamics in Nigeria
The emergence of corona virus (COVID-19) has create a great public concern as the outbreak is still ongoing and government are taking actions such as holiday extension, travel restriction, temporary closure of public work place, borders, schools, quarantine/isolation, social distancing and so on. To mitigate the spread, we proposed and analyzed a stochastic model for the continue spread of coro...
متن کاملApplication of the Kalman-Bucy filter in the stochastic differential equation for the modeling of RL circuit
In this paper, we present an application of the stochastic calculusto the problem of modeling electrical networks. The filtering problem have animportant role in the theory of stochastic differential equations(SDEs). In thisarticle, we present an application of the continuous Kalman-Bucy filter for a RLcircuit. The deterministic model of the circuit is replaced by a stochastic model byadding a ...
متن کاملComputational Method for Fractional-Order Stochastic Delay Differential Equations
Dynamic systems in many branches of science and industry are often perturbed by various types of environmental noise. Analysis of this class of models are very popular among researchers. In this paper, we present a method for approximating solution of fractional-order stochastic delay differential equations driven by Brownian motion. The fractional derivatives are considered in the Caputo sense...
متن کاملThe Effects of Different SDE Calculus on Dynamics of Nano-Aerosols Motion in Two Phase Flow Systems
Langevin equation for a nano-particle suspended in a laminar fluid flow was analytically studied. The Brownian motion generated from molecular bombardment was taken as a Wiener stochastic process and approximated by a Gaussian white noise. Euler-Maruyama method was used to solve the Langevin equation numerically. The accuracy of Brownian simulation was checked by performing a series of simulati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Psychological methods
دوره 16 4 شماره
صفحات -
تاریخ انتشار 2011